Algebra I

11-5
Square Roots of Variable Expressions
Simplify

$$
\sqrt{7^{2}}=\quad \sqrt{2^{2}}=\quad \sqrt{(642)^{2}}=\quad \sqrt{(-4)^{2}}=
$$

True / False

1) x is always positive.
2) $-x$ is always negative. \qquad
3) x^{2} is always positive \qquad
4) x^{2} is never negative. \qquad
5) The answer to a square root may not be \qquad

Thus, $\sqrt{x^{2}}=$ \qquad

Simplify. (pg 526) [Then do part b) and round answers to the nearest hundredth.]

1) $\sqrt{121 a^{2}}$
2) $\sqrt{80 a^{2} b^{2}}$

Simplify. (pg 526) [Then do part b) and round answers to the nearest hundredth.]
13) $\pm \sqrt{54 x^{2} y^{3}}$
17) $\pm \sqrt{\frac{100 f^{10}}{121}}$

Solve.
27) $x^{2}=25$
35) $81 y^{2}-16=0$

Solve. Round each root to the nearest tenth.
43) $c^{2}-212=0$

Assignment:
 pg. 526 2-50 even,

For questions 2-24, do
part a) simplify
part b) round to hundredths, if necessary

